Properties #### Acids #### **Bases** - Taste sour - Taster bitter - React with metals to produce - Feel slippery - hydrogen gas ## Indicators • Indicators allow us to determine whether a substance is an acid or a base. Image: Aris Suwanmalee (Adobe Stock) - Litmus Paper - Red = Acid - Blue = Base Blue and Red litmus papers - Phenolphthalein - Clear = Acid - Pink = Base Phenolphthalein at pH of 9 (public domain - · Bromthymol Blue - Yellow = Acid - Blue = Base Bromthymol blue – Xato (CC BY-SA 3.0) - Universal Indicator - Color depends on how acidic or basic a solution is. Pack of litmus test paper and color samples – Coprid (Adobe Stock) ### рН - Water has an equal number of H⁺ and OHions - · Water is neutral. - When an acid is dissolved in water it releases H⁺ ions (increasing the overall number of H⁺ ions). - If the number of H⁺ ions is greater than the number of OH⁻ ions, the solution is acidic. - The more H⁺ ions, the stronger the acid. - When a base is dissolved in water, it releases OH⁻ ions (increasing the overall number of OH⁻ ions in the water). - If the number of OH⁻ ions is greater than the number of H⁺ ions, the solution is basic. - The more OH ions, the stronger the base. koray (Adobe Stoc - The pH (power of hydrogen) of a solution is calculated from the number of H⁺ ions in the solution. - It is, therefore, a value that represents how acidic or basic a solution is. - The range of pH values (scale) is 0 to 14. - Acids have a pH < 7. - Bases have a pH > 7. - A neutral substance (neither an acid nor base) has a pH of 7. | - | | | |---|--|--| | - | | | | | | | | - | | | | - | | | | _ | | | | | | | | - | | | | | | | | | | | | | | | | _ | | | | | | | | - | | | | - | | | | - | | | | | | | | - | | | | - | | | | _ | - | | | | - | | | | | | | | - | | | | - | | | | _ | | | | | | | | - | | | | - | | | | | | | - · hydrochloric acid, HCI - stomach acid; used in cleaning (refining) metals; maintenance of swimming pools; household cleaning - sulfuric acid, H₂SO₄ - car batteries; manufacture of fertilizers and many other commercial products - nitric acid, HNO₃ - manufacture of fertilizers, explosives; extraction of gold - acetic acid, HC₂H₃O₂ - vinegar | carbonic acid, H₂CO₃ carbonated drinks citric acid, C₆H₈O₇ food; dietary supplements; creams, gels, liquids, and lotions. acetylsalicylic acid, C₆H₄(OCOCH₃)CO₂H aspirin | | |--|--| | sodium hydroxide, NaOH soaps and detergents; oven and drain cleaners potassium hydroxide, KOH liquid soaps and soft soaps; alkaline batteries magnesium hydroxide, Mg(OH)₂ laxatives, antacids, and deodorants; used in the neutralization of acidic wastewater calcium hydroxide, Ca(OH)₂ antacids; manufacture of cement and lime water; added to neutralize acidic soil. | | | aluminum hydroxide, Al(OH)₃ water purification; antacids ammonia, NH₃ Used as a building block for the synthesis of many pharmaceutical products; cleaning products; manufacture of fertilizers | | - The reaction between an acid and a base is a special kind of double displacement reaction called neutralization. - An acid and base react together to form a salt and water. - A salt is an ionic solid consisting of a positive ion (other than hydrogen) and a negative ion (other than hydroxide). Examples: $\begin{aligned} & \text{HCI(aq)} + \text{NaOH(aq)} \rightarrow \text{NaCI(aq)} + \text{H}_2\text{O}(\ell) \\ & \text{2HCI(aq)} + \text{Ca(OH)}_2(\text{aq)} \rightarrow \text{CaCI}_2(\text{aq)} + 2\text{H}_2\text{O}(\ell) \end{aligned}$