

Properties

Acids

Bases

- Taste sour
- Taster bitter
- React with metals to produce
- Feel slippery
- hydrogen gas

Indicators

• Indicators allow us to determine whether a substance is an acid or a base.

Image: Aris Suwanmalee (Adobe Stock)

- Litmus Paper
 - Red = Acid
 - Blue = Base

Blue and Red litmus papers

- Phenolphthalein
 - Clear = Acid
 - Pink = Base

Phenolphthalein at pH of 9 (public domain

- · Bromthymol Blue
 - Yellow = Acid
 - Blue = Base

Bromthymol blue – Xato (CC BY-SA 3.0)

- Universal Indicator
 - Color depends on how acidic or basic a solution is.

Pack of litmus test paper and color samples – Coprid (Adobe Stock)

рН

- Water has an equal number of H⁺ and OHions
 - · Water is neutral.
- When an acid is dissolved in water it releases H⁺ ions (increasing the overall number of H⁺ ions).
- If the number of H⁺ ions is greater than the number of OH⁻ ions, the solution is acidic.
- The more H⁺ ions, the stronger the acid.

- When a base is dissolved in water, it releases OH⁻ ions (increasing the overall number of OH⁻ ions in the water).
- If the number of OH⁻ ions is greater than the number of H⁺ ions, the solution is basic.
- The more OH ions, the stronger the base.

koray (Adobe Stoc

- The pH (power of hydrogen) of a solution is calculated from the number of H⁺ ions in the solution.
 - It is, therefore, a value that represents how acidic or basic a solution is.
- The range of pH values (scale) is 0 to 14.
- Acids have a pH < 7.
- Bases have a pH > 7.
- A neutral substance (neither an acid nor base) has a pH of 7.

-		
-		
-		
-		
_		
-		
_		
-		
-		
-		
-		
-		
_		
-		
-		
-		
-		
_		
-		
-		

- · hydrochloric acid, HCI
 - stomach acid; used in cleaning (refining) metals; maintenance of swimming pools; household cleaning
- sulfuric acid, H₂SO₄
 - car batteries; manufacture of fertilizers and many other commercial products
- nitric acid, HNO₃
 - manufacture of fertilizers, explosives; extraction of gold
- acetic acid, HC₂H₃O₂
 - vinegar

 carbonic acid, H₂CO₃ carbonated drinks citric acid, C₆H₈O₇ food; dietary supplements; creams, gels, liquids, and lotions. acetylsalicylic acid, C₆H₄(OCOCH₃)CO₂H aspirin 	
 sodium hydroxide, NaOH soaps and detergents; oven and drain cleaners potassium hydroxide, KOH liquid soaps and soft soaps; alkaline batteries magnesium hydroxide, Mg(OH)₂ laxatives, antacids, and deodorants; used in the neutralization of acidic wastewater calcium hydroxide, Ca(OH)₂ antacids; manufacture of cement and lime water; added to neutralize acidic soil. 	
 aluminum hydroxide, Al(OH)₃ water purification; antacids ammonia, NH₃ Used as a building block for the synthesis of many pharmaceutical products; cleaning products; manufacture of fertilizers 	

- The reaction between an acid and a base is a special kind of double displacement reaction called neutralization.
- An acid and base react together to form a salt and water.
 - A salt is an ionic solid consisting of a positive ion (other than hydrogen) and a negative ion (other than hydroxide).

Examples:

 $\begin{aligned} & \text{HCI(aq)} + \text{NaOH(aq)} \rightarrow \text{NaCI(aq)} + \text{H}_2\text{O}(\ell) \\ & \text{2HCI(aq)} + \text{Ca(OH)}_2(\text{aq)} \rightarrow \text{CaCI}_2(\text{aq)} + 2\text{H}_2\text{O}(\ell) \end{aligned}$